
Chainguard Images from Source to Prod
Chainguard is setting the standard for lightweight, hardened base images that deliver faster builds and 

deploys using less resources and a reduced attack surface aiming for 0-known vulnerabilities. This 

document outlines our internal security measures for how Chainguard Images are built and distributed to 

our customers.

As a result of this architecture the production of images involves development and release across a 

number of git repositories and delivery pipelines. 

Repositories

•	 Apko - declarative OCI container image builder 
•	 Melange - declarative APK package builder
•	 Wolfi - public Chainguard APK package manager project
•	 Chainguard Images - public Chainguard suite of images

•	 Chainguard Enterprise Packages - source and build 
pipeline for producing our ‘Chainguard’ paid APK packages. 

•	 Chainguard Private Images - source and build pipeline for 
customer specific images

Melange

Declaratively build 
APKs from source

Wolfi Undistro

Wolfi APK community 
with glibc support

Apko

Reproducibly build 
images from APKs 

Public Chainguard Images

Secure, minimal, 
always latest version 

•	 Version Controlled - Project source 
is version controlled using Git and 
served by Github

•	 Restricted Approvers - Our projects 
have identified a restricted set of 
trusted parties as approvers

•	 2 Person Review - All source 
changes to a project are approved 
by at least 2 trusted parties

•	 Authenticated - For chainguard-
dev repositories the authenticity of 
actors are enforced by hardware 
key based two factor authentication.

•	 Commit Signed - For chainguard-
dev repositories we enforce commit 
signing

•	 Build as Code - Our builds are fully 
described within the source control 
of the repository being built

•	 Service based - Build artifacts are 
produced within a restricted and 
controlled build service. Most of our 
builds are GHA based, but our APK 
packages are in-part built using our 
own customer build service

•	 Ephemeral - Our build environments 
are not reused between builds

•	 Parameterless - The change author 
is unable to parameterize the 
configuration of the build 
 

•	 Extensive unit and e2e tests
•	 Merge Status Checks - Code 

changes are blocked on completion 
of all status checks

Source Build Test

Development practices
All of the projects that feed into Chainguard Images enforce the following development practices:

Public Private

https://github.com/chainguard-dev/apko
https://github.com/chainguard-dev/Melange
https://wolfi.dev/os
https://github.com/chainguard-images/images


Packages
Every Chainguard Image is an assembly of APKs composed together to produce a functioning Linux 

filesystem. Wolfi is Chainguard’s public open-source repository of these APK packages. We also host a 

private repo and registry for packages only available through paid support agreements.

In addition to previously covered development practices, Chainguard and Wolfi packages are:

•	 CI tested to detect common packaging errors

•	 Automatically monitored and updated for upstream releases

•	 Checked for known CVE

•	 Verified to not break ABI compatibility guarantees

•	 SBOMs are generated at build time and packaged with the APKs

•	 Signed using Wolfi and Chainguard specific private RSA 4096 bit signing keys

•	 Deployed to packages.wolfi.dev automatically from our build pipeline

Images
The production of new Chainguard Images is fully automated and managed through declarative 

configuration. New images are produced according to our documented containerization best practices. 

In addition to our standard development approach, our images development process includes the following:

•	 Images are tested functionally and UX is evaluated against benchmark image references

•	 Our build pipeline:

•	 Rebuilds and tests all images in the catalog on a nightly basis

•	 APKO image builds verify all package signatures for authenticity

•	 Produces a signed SBOM attestation of the image contents

•	 Scans images for known CVEs and results are published in a vulnerability attestation

•	 Sigstore signs produced images with the build pipeline’s OIDC identity

•	 Securely publishes images to cgr.dev

https://github.com/chainguard-images/images/blob/main/images/kafka/configs/latest.apko.yaml
https://github.com/chainguard-images/images/blob/main/images/kafka/configs/latest.apko.yaml
https://github.com/chainguard-images/images/blob/main/BEST_PRACTICES.md
https://docs.sigstore.dev/cosign/other_types/

